Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma.
نویسندگان
چکیده
Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-gamma-D-glutamic acid capsule. Atx is comprised of three proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of LF and/or EF, producing lethal toxin (LT), edema toxin, or mixtures thereof. Once a host cell endocytoses these complexes, PA converts into a membrane-inserted channel that translocates LF and EF into the cytosol. LT can assemble on host cell surfaces or extracellularly in plasma. We show that, under physiological conditions in bovine plasma, LT complexes containing heptameric PA aggregate and inactivate more readily than LT complexes containing octameric PA. LT complexes containing octameric PA possess enhanced stability, channel-forming activity, and macrophage cytotoxicity relative to those containing heptameric PA. Under physiological conditions, multiple biophysical probes reveal that heptameric PA can prematurely adopt the channel conformation, but octameric PA complexes remain in their soluble prechannel configuration, which allows them to resist aggregation and inactivation. We conclude that PA may form an octameric oligomeric state as a means to produce a more stable and active LT complex that could circulate freely in the blood.
منابع مشابه
پیشبینی برهمکنش بین ترکیبات موجود در برهموم زنبور عسل و بخش آنتیژن حفاظتکننده موجود در سم سیاه زخم با استفاده از نرمافزارهای بیوانفورماتیک
Background: Protective antigen of anthrax toxin, after touching the cell receptors, plays an important role in the pathogenesis of toxin. The purpose of this study was to investigate the interaction of anthrax toxin protective antigen and four great combination propolis included caffeic acid, benzyl caffeate, cinnamic acid and kaempferol using the softwares and bioinformatics web servers. ...
متن کاملAsp 187 and Phe 190 residues in lethal factor are required for the expression of anthrax lethal toxin activity.
Anthrax toxin consists of three proteins, protective antigen, lethal factor, and edema factor. Protective antigen translocates lethal factor and edema factor to the cytosol of mammalian cells. The amino-termini of lethal factor and edema factor have several homologous stretches. These regions are presumably involved in binding to protective antigen. In the present study we have determined the r...
متن کاملIn Silico Prediction of B-Cell and T-Cell Epitopes of Protective Antigen of Bacillus anthracis in Development of Vaccines Against Anthrax
Protective antigen (PA), a subunit of anthrax toxin from Bacillus anthracis, is known as a dominant component in subunit vaccines in protection against anthrax. In order to avoid the side effects of live attenuated and killed organisms, the use of linear neutralizing epitopes of PA is recommended in order to design recombinant vaccines. The present study is aimed at determining the dominant epi...
متن کاملAnthrax Toxin Receptor Drives Protective Antigen Oligomerization and Stabilizes the Heptameric and Octameric Oligomer by a Similar Mechanism
BACKGROUND Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin, respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric and octameric complexes that bind L...
متن کاملHuman anti-anthrax protective antigen neutralizing monoclonal antibodies derived from donors vaccinated with anthrax vaccine adsorbed
BACKGROUND: Potent anthrax toxin neutralizing human monoclonal antibodies were generated from peripheral blood lymphocytes obtained from Anthrax Vaccine Adsorbed (AVA) immune donors. The anti-anthrax toxin human monoclonal antibodies were evaluated for neutralization of anthrax lethal toxin in vivo in the Fisher 344 rat bolus toxin challenge model. METHODS: Human peripheral blood lymphocytes fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 399 5 شماره
صفحات -
تاریخ انتشار 2010